## DPP - 1 (PEE)

## Video Solution on Website:- <br> https://physicsaholics.com/home/courseDetails/88

Video Solution on YouTube:- https://youtu.be/g69wcFX_VCE

## Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/28

Q 1. We wish to observe a particle which is $2.5 \AA$ in size. The minimum energy photon that can be used (to observe a particle maximum required wavelength is equal to size of object) -
(a) 5 KeV
(b) 8 KeV
(c) 10 KeV
(d) 12 KeV

Q 2. The radiation force experienced by body exposed to radiation of intensity 1 assuming surface of body to be perfectly absorbing is

(a) $\frac{\pi I R^{2}}{c}$
(b) $\frac{2 \pi I R^{2}}{c}$
(c) $\frac{4 \pi / R^{2}}{c}$
(d) None of these

PASSAGE (Q3. to Q5)
The light sensitive compound on most photographic films is silver bromide $\{\mathrm{AgBr})$. A film is exposed when the light energy absorbed dissociates this molecule into its atoms, (the actual process is more complex, but the quantitative result does not differ with this assumption). The energy of dissociation of AgBr is $10^{5} \mathrm{~J} / \mathrm{mol}$. Assume a photon that is just able to dissociate an AgBr molecule.
Q 3. Find photon energy in e V.
(a) 1.04 eV
(b) 1.14 eV
(c) 1.72 eV
(d) 1.28 eV

Q 4. Find the frequency of the photon
(a) $2.71 \times 10^{14} \mathrm{~Hz}$
(b) $2.01 \times 10^{14} \mathrm{~Hz}$
(c) $2.5 \times 10^{14} \mathrm{~Hz}$
(d) $20.1 \times 10^{14} \mathrm{~Hz}$

Q 5. Will the radiation from a $50 \mathrm{~kW}, 100 \mathrm{MHz}$ FM station expose the film?
(a) no
(b) yes
(c) cannot say
(d) Incomplete data


Q 6. A photon strikes a free electron at rest and is scattered straight backward. If the speed of electron after collision is $\alpha \mathrm{c}$, where $\alpha \ll 1$ then-
(a) electron's kinetic energy is a fraction a of photon's intial energy
(b) electron's kinetic energy is fraction $\frac{1}{\alpha}$ of photon's initial energy
(c) electron's kinetic energy is a fraction $\mathrm{a}^{2}$ of photon's intial energy
(d) electron's kinetic energy is a fraction $\frac{1}{\alpha^{2}}$ of photon's initial energy

Q 7. Two sources A and B have same power. The wavelength of radiation of A is $\lambda_{a}$ and that of B is $\lambda_{b}$. The number of photons emitted per second by A and B are $n_{a}$ and $n_{b}$ respectively, then -
(a) $\lambda_{\mathrm{a}}>\lambda_{b}$
(b) if $\lambda \mathrm{a}>\lambda_{b}, n_{a}<n_{b}$
(c) if $\lambda \mathrm{a}<\lambda_{b}, n_{a}<n_{b}$
(d) if $\lambda \mathrm{a}>\lambda_{b}, n_{a}=n_{b}$

Q 8. A monochromatic beam of light $(\lambda=4900 \AA)$ incident normally upon a surface produces a pressure of $5 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$ on it. Assuming that $25 \%$ of the light incident is reflected and the rest absorbed, find the number of-photons falling per second on a unit area of thin surface.
(a) $6 \times 10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
(b) $2 \times 10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
(c) $3 \times 10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
(d) $9 \times 10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$

Q 9. If solar constant is S and average wavelength of sun radiation is $\lambda$, Total number of photons in a spherical volume of radius $R$ near ground is
(a) $\frac{4 \pi s \lambda R^{3}}{3 h c^{2}}$
(b) $\frac{2 \pi S \lambda R^{3}}{3 h c^{2}}$
(c) $\frac{4 \pi S \lambda R^{3}}{h e^{2}}$
(d) None of these

Q 10. Two black objects of same diameter, a sphere and a disc, are placed in front of a uniform beam of light. The plane of disc is perpendicular to the light rays. The radiation force on them is
(a) Zero
(b) Bigger on disc
(c) Bigger on sphere
(d) Same on both

Q 11. A perfectly absorbing black solid sphere with constant density and radius R , hovers stationary above sun. This is because the gravitational attraction is balanced by radiation force due to sun light. Assume sun is far away that it is closely approximates a point source of light. The distance from the centre of sun at which sphere hovers is proportional to
(a) R
(b) $1 / \mathrm{R}$
(c) $\frac{1}{R^{2}}$
(d) $R^{0}$


| Q. 1 a | Q. 2 a | Q. 3 a |  | Q. 4 c |  | Q. 5 a |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. 6 a | Q. 7 c | Q. 8 | c | Q. 9 | a | Q. 10 | d |
| Q. 11 d |  |  |  |  |  |  |  |

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
$\times$ Personal Coach $\times$ Study Planner


No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

## PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
$\times$ Personal Coach
$\times$ Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get $10 \%$ OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

## JEE Main \& Advanced, NSEP, INPhO, IPhO Physics DPP - Solution

DPP-1 Photon Theory \& Radiation Pressure By Physicsaholics Team

Q1) We wish to observe a particle which is $2.5 \AA$ in size. The minimum energy photon that can be used (to observe a particle maximum required wavelength is equal to size of object) -
maximuno

$$
\begin{aligned}
E & =\frac{h c}{s}=\frac{12400 \text { 日e }}{2 \cdot 5-\alpha} \\
& =\frac{124}{2.5} k e \theta=5 \mathrm{ke}
\end{aligned}
$$

(a) 5 KeV (b) $8 \mathrm{KeV} \quad \mathrm{D}$ (c) $10 \mathrm{KeV} \quad$ (d) 12 KeV

Q2) The radiation force experienced by body exposed to radiation of intensity 1 assuming surface of body to be perfectly absorbing is


## PASSAGE (Q. 3 to Q.5)

The light sensitive compound on most photographic films is silver bromide $\{\mathrm{AgBr})$. A film is exposed when the light energy absorbed dissociates this molecule into its atoms, (the actual process is more complex, but the quantitative result does not differ with this assumption). The energy of dissociation of AgBr is $10^{5} \mathrm{~J} / \mathrm{mol}$. Assume a photon that is just able to dissociate an AgBr molecule.

$$
1 J=1.6 \times 10^{-19} \mathrm{ev}
$$

Q 3. Find photon energy in e V.

## Energy per molicute.

$$
=\frac{100^{5}\left(10^{23} \times 1.6 \times 10^{-19}\right.}{6 V}
$$

$$
\begin{aligned}
& \text { (c) } 1.72 \mathrm{eV} \\
& =\frac{10}{6 \times 1.6}=\frac{10}{9.6} \mathrm{eV}
\end{aligned}
$$

Q4) Find the frequency of the photon
(a) $2.71 \times 10^{14} \mathrm{~Hz}$
(b) $2.01 \times 10^{14} \mathrm{~Hz}$

$$
\begin{aligned}
& E=h \nu v \\
& =\frac{2}{5}=\frac{1.04 \times 1.6 \times 10}{6.6 \times 10-34} \\
& =\frac{1.6}{6.6} \times 105
\end{aligned}
$$

(c) $2.5 \times 10^{14} \mathrm{~Hz}$
(d) $20.1 \times 10.4 \mathrm{~Hz}$

$$
\begin{aligned}
& \frac{\mathrm{F}_{6}}{6.6} \times 10^{14} \mathrm{H}_{3} \\
& =2.5 \times 10^{14} \mathrm{H}_{3}
\end{aligned}
$$

Q5) Will the radiation from a $50 \mathrm{~kW}, 100 \mathrm{MHz}$ FM station expose the film?


Q6) A photon strikes a free electron at rest and is scattered straight backward. If the speed of electron after collision is $\alpha \mathrm{c}$, where $\alpha \ll 1$ then-
(a) electron's kinetic energy is a fraction a of photon's intial energy
(b) electron's kinetic energy is fraction $\frac{1}{a}$ of photon's initial energy
(c) electron's kinetic energy is a fraction $\alpha^{2}$ of photon's intial energy
(d) electron's kinetic energy is a fraction $\frac{1}{\alpha^{2}}$ of photon's initial energy

Ans. a
by Conservation of $\frac{h}{\kappa}=m \alpha c-\frac{h}{\delta^{\prime}}$
momentum $\rightarrow$

$$
\frac{1}{x}+\frac{1}{s^{i}}=\frac{m \alpha c}{h}--(1)
$$

by Conservation of $\frac{t h c^{2}}{\alpha}=\frac{1}{2} m \alpha^{2} c^{2}+\frac{h c}{S_{r}}$

$$
\begin{aligned}
& \frac{1}{\lambda}-\frac{1}{\delta^{1}}=\frac{m \alpha^{2} c}{\frac{2}{2}} \frac{-}{2}-(11) \\
& \text { (0) } \frac{\frac{2}{\delta}-\frac{m \alpha c}{h}(1+\alpha / 2)=\frac{m \alpha c}{h} \quad \text { Shce } \alpha \ll 1 \quad-(111)}{\frac{m}{\delta}} \\
& \frac{\text { KE of elestron }}{\text { hergy of incident photon }}=\frac{\frac{1}{2} m \alpha^{2} c^{x} \delta}{h x}=\left(\frac{m \alpha c x}{2 h}\right) \alpha=\alpha
\end{aligned}
$$

Q7) Two sources A and B have same power. The wavelength of radiation of A is $\lambda_{a}$ and that of B is $\lambda_{b}$. The number of photons emitted per second by A and B are $n_{a}$ and $n_{b}$ respectively, then -
(a) $\lambda_{a}>\lambda_{b}$

(b) if $\lambda_{\mathrm{a}}>\lambda_{b}, n_{a} \leqslant n_{b}$
(e) if $\lambda a<\lambda_{b}, n_{a} \leqslant n_{b}$
(d) if $\lambda a>\lambda_{b}, n_{a}=n_{b}$


$$
\begin{aligned}
& \Rightarrow \frac{h}{\delta}=\text { Const. } \\
& \Rightarrow n \quad \propto \delta .
\end{aligned}
$$

Q8) A monochromatic beam of light ( $\lambda=4900 \AA$ ) incident normally upon a surface produces a pressure of $5 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$ on it. Assuming that $25 \%$ of the light incident is reflected and the rest absorbed, find the number of photons falling per second on a unit area of thin surface.
(a) $6 \times 10^{20} m^{-2} s^{-1}$
(b) $2 \times 10^{20} \mathrm{~m}^{-2} s^{-1}$
 (e) $\left.3 \times 10^{20} m\right)^{-2} s \rightarrow 1$
(d) $9 \times 10^{20} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$


Q9) If solar constant is $S$ and average wavelength of $s u n$ radiation is $\lambda$, Total number of photons in a spherical volume of radius R near ground is
(a) $\frac{4 \pi S \lambda R^{3}}{3 h c^{2}}$
(b) $\frac{2 \pi S \lambda R^{3}}{3 h c^{2}}$
(c) $\frac{4 \pi S \lambda R^{3}}{h c^{2}}$

tina taken by plight to fill
the cubs $=1 / c$
Energy stored in cube

$$
=I \times 1 m^{2} \times \frac{1}{c}
$$

ho of photons in cube
(d) None of these

$$
\begin{aligned}
& =1,1, \text { per } m^{3} \\
& =\frac{I}{C(h(/ \delta)}=\frac{I \lambda}{h c^{2}}=\frac{S \delta}{h c^{2}}
\end{aligned}
$$

no of angatanesin sphere.

$$
=\frac{4}{3} \pi R^{3} \times \frac{S S}{h c^{2}}
$$

Q10) Two black objects of same diameter, a sphere and a disc, are placed in front of a uniform beam of light. The plane of disc is perpendicular to the light rays. The radiation force on them is
(a) Zero
(b) Bigger on dise
(c) Bigger on sphere


Q11) A perfectly absorbing black solid sphere with constant density and radius R , hovers stationary above sun. This is because the gravitational attraction is balanced by radiation force due to sun light. Assume sun is far away that it is closely approximates a point source of light. The distance from the centre of sun at which sphere hovers is proportional to
(a) R
(b) $1 / \mathrm{R}$
(c) $\frac{1}{R^{2}}$


## For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/88

Video Solution on YouTube:-
https://youtu.be/g69wcFX_VCE

Written Solution on Website:-


Chalo Nikis

